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Abstract:  

The Frobenius method is a mathematical technique used to find power series solutions for linear 

differential equations with regular singular points. It involves assuming a power series solution, 

expressing coefficients in terms of recurrence relations, and determining convergence conditions. This 

method is particularly useful when traditional methods fails due to singular points of the differential 

equation. In the present work, Laguerre equation is solved using Frobenius method. 
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1.Introduction  

The Frobenius method plays a crucial role in solving problems in physics, engineering, and other 

fields where differential equations arise. It is a second-order linear differential equation that 

arises in various scientific and engineering contexts, quantum mechanics and mathematical 

physics. The significance of this equation is describing the radial part of the wave function for a 

hydrogen-like atom. The Laguerre equation involves a dependent variable, its derivatives, and a 

radial coordinate. Understanding and solving the Laguerre equation is essential for analyzing the 

behaviour of physical systems with radial symmetry which makes this equation an attractive 

equation for researchers. 
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For centuries, ordinary differential equations have been used in mathematics and remain one of 

the primary tools that are used for the modelization of phenomena [1] within all the sciences, 

engineering, and even economies. Most differential equations may be solved by using well-

established methods, but when singularities are introduced in an equation, the system for solving 

becomes complicated. Singularities introduced into the differential equations further complicate 

the behaviour of the solutions, which demands specialized techniques to deal with them in an 

efficient manner. One of those methods, in fact powerful, is the Frobenius method, traditionally 

used for finding solutions near regular singular points.  

In the classical application of the Frobenius method [2] is specially well suited for second order 

linear differential equations with regular singular points. In this technique if a point will be 

treated as a number from the given field, is a singular point then that point will be called regular 

provided a solution can be expanded at that point in a power series multiplied by a leading factor 

that accounts for the singularity. This gives the Frobenius method a series solution with point-

wise convergence around the singular point, an important property when finding exact solutions 

is very difficult or even impossible to achieve. With this method, successful applications in a 

broad range of problems from mechanical systems as simple as they can be to complex equations 

like quantum mechanics and electromagnetic theory are possible. 

A vast number of researchers contributed to the development of this extension of the Frobenius 

method beyond its classical application to regular singular points. In the literature, Einar Hille [3] 

indicated the possibility of applying this method to equations with irregular singular points, 

where the complexity of solutions drastically increases. Moreover, how solutions have 

asymptotic behaviour when approaching irregular singularities. It was analyzed that under 

certain conditions, the Frobenius method could be modified to obtain efficient results. This 

encouraged and generated new avenues in solving a larger class of differential equations arisen 

in pure and applied mathematics. 

Levi-Civita took Hille's work further by refining techniques for dealing with irregular singular 

points. Levi-Civita's method has expanded the scope of classical Frobenius by moving it into 

such situations where, due to singularity, it is impossible to reach the behavior using power 

series. It was absolutely essential further applications in more difficult differential equations; 
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results of his work have been quoted as reference for mathematical physics, in which these 

differential equations emerge.  

Around the same time, Rolf Nevanlinna [4] and Jean Écalle [5] further improved knowledge of 

the behavior of solutions at irregular singular points. Nevanlinna's worked on the analytic 

continuation that simplifies the solutions behaviour as they are continued past the immediate 

region of the singularities. Such a concept is important for solving ODEs with irregular singular 

points because of the complicated multivalued behavior often seen by the solutions, now 

requiring advanced techniques for continuation.  

Another fundamental theory developed toward the end of the 20th century was that of Jean 

Écalle on resurgence, which became a helpful tool in handling such problems. This work was 

especially powerful in extending the Frobenius method and similar techniques to nonlinear 

differential equations and into the regions where irregular singular points are more commonly 

encountered. 

Legendre, Bessel, and Hermite equations, which describe critical phenomena in fields from 

quantum mechanics to electromagnetism can also be analyzed by the present method. Thus, the 

Legendre equation arises in problems that have spherical symmetry, which contain the 

gravitational field and the electric potential of a charged sphere. The Bessel equation is important 

in speaking of wave propagation, and the Hermite equation becomes essential for quantum 

mechanics and more specifically for discussing the harmonic oscillator from a quantum point of 

view.  

Despite these advances, there are many important classes of equations that have yet to be fully 

explored using the Frobenius method. Among them is the class of Laguerre equations, which 

also arises very naturally in quantum mechanics in the study of the Schrödinger equation for the 

hydrogen atom and many other phenomenon.  

The sections of the present papers are: In section 2, the Laguerre equation is discussed in detail. 

In Section 3, the Frobenius method is elaborated. In Section 4 implementation of the method on 

the considered problem. Sections 5, presents the discussion and the conclusion is given in section 

6. 

2. Laguerre Equation 
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The Laguerre differential equation is a second-order linear equation which, having various many 

applications in physics and engineering. The Laguerre equation has the following form: 

( )"  1 '     0xy x y ny+ − + =      (1) 

In equation (1), y is the solution and n is the nonnegative integer. The above equation is a special 

case of the more generalized Laguerre differential equation given as follow: 

( ) ( )" 1 ' 0

 

xy m x y n m y+ + − + − =
 

The solutions of this equation are called the Laguerre polynomials and have found a very 

interesting application in many branches of theoretical physics, quantum mechanics for 

expansion of wave functions where the radial part is hydrogen atom [6]. Laguerre-type linear 

ordinary differential equations [7] are prototypes of structured linear differential equations of 

higher even-order, which naturally extend the second-order Bessel and Laguerre equations 

defined on the positive half-line of the real field R. This attracts the researchers to compute more 

relevant solution of such arising differential equations.  

3. Frobenius Method 

The power series method is very effective method for computing the solution of the ordinary 

differential equations where the equation contains variable coefficients. The general form of the 

power series is given as [12]: 

2

0 0 1 0 2 0

0

( ) ( ) ( ) ...r

r

r

a t t a a t t a t t


=

− = + − + − +     (2) 

where ‘t’ is varying, 0t is the center of the series and 0 1 2, , ,...a a a  are the constant parameters. 

Further if the equation is of the form: 

2 '' ( ) ' ( ) 0t y tP t y Q t y+ + =      (3) 

then reducing the equation in the standard form gives: 

2

( ) ( )
'' ' 0

P t Q t
y y y

t t
+ + =      (4) 
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In such cases, the coefficients of 'y  and y  are not analytical at 0t = which interprets that is 

have singularity at 0t = . This insists Frobenius method to compute the solution as power series 

expanded form. 

The generalized form of the solution is given as: 

0

r k

k

k

a xy


+

=

=       (5) 

4. Implementation of Frobenius method on Laguerre differential equation 

Frobenius method is applied to second order Laguerre differential equation by taking into special 

consideration the behaviour of the equation near its singular points. Singularity for the Laguerre 

equation occurs at 0x =  and at x =  , where the former is a regular singular point. Applying the 

Frobenius method, a series solutions is obtained near point 0x =   and determine under what 

conditions such solutions converge. Their behavior is also analyzed as 0x→ to conclude 

whether they have an irregular singularity. 

This work is derived from the basic research implemented by preceding mathematicians who 

enlarged the use of the Frobenius method with solutions to ever more complex problems. This 

work apparently presents the Laguerre equation, showing that the Frobenius method is extremely 

potent in solving differential equations with both theoretical and practical importance. Findings 

here would deepen our knowledge of the Laguerre equation itself but will give one insight about 

how series solutions are actually used for ODEs at singular points. 

This extra technical purpose of this work would be to consider the practical consequences of 

these results to problems in quantum mechanics and other areas where the Laguerre polynomials 

are fundamental. It would also be interesting to apply Frobenius method for the Laguerre 

equation to relate new insights into the convergence properties of the series solutions together 

with some limitations of the method applied to equations showing complex singular behaviour. 

Such results can be good working tools not only for mathematicians but for physicists and 

engineers who will have a fresh opportunity to solve differential equations in their theoretical 

and practical uses. 

Consider the equation: 
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 ( )"  1 '     0xy x y my+ − + =      (6) 

 

The general form of the equation is: 

"  ( ) '   Q(x)   0y P x y y+ + =      (7) 

It is observed that at 0 0, ( ) 0x P x= =  is a regular singular point. It is assumed that the solution 

is: 

0

n

n

n

ra xy


+

=

=  

Computing first and second order derivatives as: 

    
1

0
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xy a n r
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+ −
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+=      (8) 

Similarly,  
2

0
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n
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+ += −      (9) 

Substituting the values in equation (6) which obtain the relation as: 
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Equating the coefficient of the lowest power of 0x = on taking 0n =  we obtain: 

2

0( ) 0a r =  which implies 0r = . 

Continuing and equating 
1n rx + −
 to zero by taking 1n k= +  and similarly taking n k=  for 

n rx +
 

one obtains the relation as: 
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1 2
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For 0,1,2,...k = , the relations obtained are: 
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5. Discussion 

It has been observed that the computed solution has varied applications in solving higher order 

differential equations. It signifies the importance of Laguerre polynomial in obtaining the 

solution of phenomenon in physics and hydrogen atom. 

6. Conclusions 

The implementation of the Frobenius method to the Laguerre equation, the analysis of its 

solutions is extended far beyond the one that could be obtained directly with a standard approach 

to power series and, in particular, gives insights into the Laguerre function near its singular 

points. It is exactly the adoption of a generalised power series expansion that could be inclusive 

of fractional or logarithmic terms that allows the Frobenius method to demonstrate solutions that 



Solution of Laguerre Equation by Frobenius Method 

 

42 
 

do indeed capture the singular behaviour of the equation-precisely, at infinity. It is concluded that 

this method provide a better and extended solution. The future scope of this work is its extension 

over associated Laguerre equation. 
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