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Abstract 

Numerical treatment of various PDEs is todays demanding area of research. In this article one 

of the PDEs has been simulated through two different numerical methods named mesh free 

the Radial basis Pseudo-spectral method (RB-PSM) and Exponential modified cubic B-Spline 

differential quadrature method (EMCB-DQM). Numerical results are derived using Leave-

One-Out Cross-Validation (LOOCV) approach. This statistical approach is based on the 

concept of enhancing the positive characteristics of a mathematical model with diminishing 

negative aspects. Two examples of Fitzhugh-Nagumo equation represent the proposed 

numerical schemes by the obtained results LOOCV. Also, comparison of obtained results is 

also done for testing the accuracy and effectiveness of the presented different numerical 

methods. 

Keywords: Exponential Cubic Differential quadrature method, Fitzhugh-Nagumo 

Equation, Radial Basis Pseudo Spectral Method, Leave-One-Out Cross-Validation 

approach. 

1. Introduction 

In mathematical research, non-linear PDEs are intensively practiced to emulate the 

physical phenomena of the natural model. Numerical solutions of PDEs provide valuable 
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facts and an improved form of mathematical models. The Fitzhugh-Nagumo (FN) equation 

is a type of non-linear partial differential equation presented as: 

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢(𝑢 − 𝛼)(1 − 𝑢),    0 < 𝜁 < 1  (1) 

 

Here, 𝑢(𝑥, 𝑡) is an anonymous factor depends upon the arbitrary constant. Nagumo and 

Fitzhugh proposed the FN equation for solving the problematic models of nerve axon and 

membrane [1-2]. The presented equation has various real-life applications such as in 

population genetics, autocatalytic chemical reactions, circuit theory, and neurophysiology [3-

5]. 

In this paper, the Fitzhugh-Nagumo equation is solved numerically using the hybrid approach 

of one of the algorithms named LOOCV with two different basis function: exponential 

modified cubic B-spline and RBFs. The associated shape parameter of RBFs is found out by 

the proposed approach of LOOCV with one of the RBF method named RBF pseudo-spectral 

method and other named as exponential modified cubic B-Spline differential quadrature 

method with minimizing the errors.  

1.1. Method 1:Exponential Modified Cubic Differential quadrature (EMC-DQM) Method  

The DQM is a numerical technique used for solving differential equations by approximating 

derivatives as weighted sums of function values at discrete points. Unlike traditional finite 

difference methods, which rely on local approximations, DQM employs a global approach, 

using all grid points in the domain to estimate derivatives. This leads to high accuracy with 

fewer grid points, making it an efficient alternative to finite difference, finite element, and 

spectral methods. 

The origins of DQM trace back to the early 1970s when Richard Bellman and his colleagues 

introduced it as an extension of the quadrature concept used in numerical integration [6-7]. 

Bellman’s idea was to approximate derivatives similarly to how numerical integration 

approximates integrals, using a weighted sum of function values [8-9]. Initially, DQM gained 

attention in computational mathematics but was later widely adopted in engineering 

disciplines, particularly in solving structural, fluid dynamics, and heat transfer problems. 

Over the decades, researchers refined the method by deriving weighting coefficients using 

polynomial-based interpolation, such as Lagrange polynomials, and expanding it to handle 

more complex boundary conditions and nonlinear problems. 
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In computational mathematics, a variety of basis functions have been utilized to numerically 

solve equations such as the Burgers equation, nonlinear Schrödinger equation, multi-

dimensional convection–diffusion equations, telegraph equation, sine–Gordon equation, and 

Fisher’s reaction–diffusion equation [10-16]. The exponential modified cubic B-spline 

differential quadrature method (EMCB-DQM) has been introduced as an effective technique 

for these purposes. However, its application has been limited, primarily due to the sensitivity 

of the parameter 𝜆 within the EMCB basis functions. Traditionally, 𝜆 has been assigned 

arbitrary values through trial-and-error methods, often leading to unstable and unreliable 

results. 

To address this challenge, recent research has integrated the LOOCV technique with EMCB-

DQM to systematically determine the optimal value of ε. LOOCV is a robust method for 

model evaluation and parameter selection, as it provides an almost unbiased estimate of 

generalization performance. By employing LOOCV, researchers have achieved a more 

systematic and reliable approach to parameter optimization, enhancing the stability and 

accuracy of numerical solutions.  

The efficacy of this integrated approach has been demonstrated in studies such as [17] by 

Rani and Arora. These studies highlight the advantages of combining LOOCV with EMCB-

DQM, providing a more systematic approach to parameter optimization. This advancement 

ensures that the resulting solutions are not only accurate but also reproducible, thereby 

enhancing the method’s reliability and potential applicability across various scientific and 

engineering problems.  

This innovative combination is poised to attract further attention from researchers seeking to 

improve numerical solution methodologies, offering a more robust framework for solving 

complex differential equations. 

1.2. Method 2: Radial Basis Pseudo-spectral (RB-PS) Method 

RB-PS process is an inventive scheme to find the solutions of various PDEs numerically and 

does not require any meshes. Numerical treatment of various ordinary and partial differential 

equations requires a successful basis function named RBF. Approaches based on RBFs are 

extremely novel and fruitful method for various mathematical problems based on geometrical 

complex domain. Hardy [18] firstly invented the approach based upon multiquadric RBF for 
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interpolation purposes with topological quadric surface. Micchelli [19] made a step forward 

by demonstrating that multi-quadratic surface interpolation is always solvable. The MQ 

approach has the benefit of obtaining the interpolant using a linear combination of basis 

functions that are only dependent on the distance from a specific node, which is known as the 

center. In order to solve a PDE, Edward Kansa invented the Kansa method [20] in 1990. It 

first used the multi quadratic, a widely supported interpolant to analyze the behavior of PDEs.  

The numerical simulation of a PDE using RBF requires the value of the shape parameter that 

evaluates the shapes of RBFs and needs to be evaluated precisely. RBFs offer flexibility and 

efficiency over the complex domain for solving various PDEs. For detailed explanation of 

RBF with their applications refer the published work Arora et. al [21]. In 2023, RBF-PS 

method employed to analyze the solutions of PDE with optimization technique [22-23] by 

optimizing the related parameter of RBF. 

Firstly, Fasshauer [24] employed a collocation method using RBF combined with pseudo-

spectral approach. Pseudo-spectral methods are known to be perfect solvers in the numerical 

simulation of PDEs. The pseudo-spectral method with RBF is an advantageous approach for 

the solution of multi-variate scattered nodes of complicated compounds. The nonlinear partial 

differential equations were solved by Uddin and Ali [25] using the method RBF-PS. Using 

the same technique, Uddin [26] proposed the solution to the equation of the same width. The 

two-dimensional hyperbolic telegraph equations are solved by Rostamy et al. [27] with the 

RBF pseudo-spectral approach. In [28], numerical simulation of Fisher’s equation is 

presented by using the RBF-PS method with two different optimization techniques. 

The layout of the article is as follows: Section 2 focus on the LOOCV algorithm with 

detailed graphical process. Section 3 deals with the numerical solution of two test problems 

of the Fitzhugh-Nagumo equation with multi-quadric (MQ) RBF and Expo-MCB at 

different node points using the proposed hybrid approach. Section 4 concludes the 

outcomes of the proposed method. 

2. Leave-one-out-cross-validation (LOOCV) Approach 

Leave-one-out-cross-validation (LOOCV) is also one of the best approaches for finding the 

optimal shape parameter. LOOCV is a technique commonly used to assess the performance 

and validate the accuracy of predictive models, particularly in the context of machine 

learning and statistical modelling. Its origins can be traced back to the early days of statistical 

analysis and cross-validation techniques. It gained prominence in the context of cross-
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validation as a robust validation technique in the 1970s and 1980s. However, LOOCV can 

also be adapted and applied to measure the output of the numerical solutions for PDEs. For 

evaluating the numerical solutions of PDEs, LOOCV with RBF is first used by Rippa [29] for 

optimizing the shape parameter by minimizing the error function.  

Leave-One-Out Cross-Validation (LOOCV) algorithm 

The LOOCV method provides a way to evaluate how well a machine learning algorithm will 

perform when it is used to make predictions. Here’s how the LOOCV procedure works: 

• The dataset is divided into 𝑛 subsets, where 𝑛 is the total number of observations in the 

dataset. 

• In each iteration, one observation is set aside as the test set, and the remaining 𝑛 − 1 

observations are used to train the model. 

• The model is then tested on the single observation that was left out, and this process is 

repeated 𝑛 times, ensuring each observation serves as a test set once. 

• The performance of the model is evaluated by calculating the average error rate across all 

iterations. 

3. Applications of Numerical Scheme 

This section studies the numerical solutions of the FN equation using the RBF-PS method 

and Expo-MCB-DQ method, which divides the numerical simulation into two parts. In the 

first part, the approximated derivatives are determined using basis functions, and in the 

second part, results are derived for the obtained equation with MATLAB using the 

LOOCV algorithm. Also, this part focuses on the comparative analysis of derived results 

for i= 1 to N. 

𝐿∞ = max(|𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖,𝑡) − 𝑢(𝑥𝑖,𝑡)|) ; 

𝐿2 = √ℎ ∑ |𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖,𝑡) − 𝑢(𝑥𝑖,𝑡)|
2𝑁

𝑖=1 ; 

𝐿𝑟𝑚𝑠 = √
1

N
∑|𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖,𝑡) − 𝑢(𝑥𝑖,𝑡)|

2
N

i=1

;  
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Example 1: The non-linear general Fitzhugh-Nagumo equation (1) of dimension one in the 

domain [-10, 10] with exact solution taken from [30] 

𝑢(𝑥, 𝑡) =
1

2
+

1

2
tanh (

1

2√2
(𝑥 −

2𝜁 − 1

√2
𝑡)) ;        𝑥𝜖[−10, 10]& t ≥ 0 

With boundary conditions taken from the exact solution and the following initial conditions: 

𝑢(𝑥, 0) =
1

2
+

1

2
tanh (

𝑥

2√2
) ;        

A numerical solution of the general FN equation by RBF-PS method is obtained at a = −10, b 

= 10 𝑎𝑛𝑑 𝜁=0.75 at various time intervals, and the derived results are compared with the 

findings of EMCB-DQM. The 𝐿∞, 𝐿2 and RMS error are calculated in Table 1 for time 

intervals 0.2; 0.5; 1; 1.5; 2; 3 using MQ RBF and EMCB-DQM the optimal value of the 

parameter 𝜆 = 0.889457  and 0.100050 by RB-PS approach using LOOCV for results at 

N=101. Figure 1 presents the numerical simulation of solution of FN equation at different 

time intervals with N= 51 and ∆𝑡 = 0.01. 

Table 1. Comparison of error norms of problem 1 at N= 101 and ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟏 

T 𝑳𝑹𝑴𝑺 𝑳∞ 𝑳𝑹𝑴𝑺 𝑳∞ 

Expo-MCB-DQ Method RBF-PS Method 

0.2 2.6535e-11 4.3470e-05    5.8391e-05 7.3508e-04 

0.5 1.8163e-10 1.1288e-04    2.4955e-04 2.2319e-03 

1.0 8.2167e-10 2.4076e-04    8.8015e-04 3.0503e-03 

1.5 2.0886e-09 3.8563e-04    1.9422e-03 7.8870e-04 

2.0 4.2261e-09 5.4974e-04    3.3972e-03 1.33359e-04 

3.0 1.2573e-08 9.4619e-04    6.8676e-03 5.9699e-06 
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Figure 1. Numerical simulation of problem 1 at N= 51 and∆𝑡 = 0.01. 

Problem 2: Consider Newell-whitehead equation i.e., special type of Fitzhugh-Nagumo 

equation (1) with 𝜁=−1. Its analytic solution [30] considered as 

𝑢(𝑥, 𝑡) =
1

2
+

1

2
tanh (

−1

2√2
(𝑥 −

3

√2
𝑡)) ;   

With initial conditions as follows: 

𝑢(𝑥, 0) =
1

2
+

1

2
tanh (

−𝑥

2√2
) ; 

and boundary conditions taken from the exact solution. For problem 2, Table 2 represents the 

different error norms calculated by Expo-MCB-DQ method with parameter value 𝜆 =

0.999934 using LOOCV that are comparable with the results derived by RBF-PS method with 

cubic matern RBF at different time intervals as 0.001, 0.002 and 0.003 with N=21 with 

parameter value 0.401232. The graphical presentation of numerical solution is shown by 

figure 2.  

Table 2. 𝑳∞, 𝑳𝟐and 𝑳𝑹𝑴𝑺  errors for Problem 2 with 𝜁=−1 and N=21. 

T 𝐿∞ 𝐿2 𝐿𝑅𝑀𝑆 𝐿∞ 𝐿2 𝐿𝑅𝑀𝑆 

 Expo-MCB-DQM RBF-PS Method 

0.001 1.2728e-06 2.2883e-12 1.0402e-13 8.7088e-09 2.5076e-08  1.9004e-09 
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0.002 2.5475e-06 9.1534e-12 4.1606e-13 6.7952e-08 2.3994e-08 5.2359e-09  

  0.003  3.8241e-06  2.0595e-11 9.3615e-13 4.5460e-08  1.2648e-07 9.9202e-09  

 

 

Figure 2. Numerical simulation of problem 2 with N=21. 

4. Conclusions 

In this paper, two effective numerical techniques are utilized to solve the Fitzhugh-Nagumo 

equation, an important model in various real-life applications. The first method is the 

Exponential modified cubic B-Spline differential quadrature method (ECB-DQM), and the 

second is the Radial basis function Pseudo-spectral method (RB-PS). Both methods 

incorporate an efficient statistical approach to determine the optimal parameter values for the 

basis functions, which is a novel contribution of this study. 

A comparative analysis of these techniques reveals that the Exponential cubic B-Spline DQM 

performs slightly better than the Radial Basis Pseudo-Spectral Method. This finding 

highlights the potential of these numerical approaches for future applications in science and 

engineering. Additionally, this study emphasizes the significance of the Leave-One-Out 

Cross-Validation (LOOCV) technique in optimizing parameter selection, further improving 

the accuracy and efficiency of these methods. 
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