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Abstract: 

This research introduces a refined variant of the Aquila optimizer (AO) through a novel 

population segmentation technique. The new algorithm named Population Segmentation-

Aquila Optimizer (PS-AO), strategically partitions search agents to achieve better exploration-

exploitation trade-offs and increased solution diversity. We validate PS-AO’s effectiveness 

through extensive testing on IEEE CEC 2019 benchmark functions and two mechanical 

engineering design problems. The experimental outcomes reveal that PS-AO achieves superior 

performance metrics in solution accuracy.  

Keywords: Optimization; Nature Inspired Metaheuristic Algorithm; Aquila Optimizer; 

Engineering Design Problem 

1. Introduction 

One of the most promising fields for resolving practical optimisation issues is swarm 

intelligence [1]. Swarm intelligence is the ability of social organisms to work together to 

acquire food and create an intelligent structure [2]. By mimicking the swarming behavior of 

many sentient animals, including as birds, whales, wolves, ants, and bees, a variety of 

techniques have been devised to handle non-linear, non-convex, and discontinuous problems. 

Numerous examples, such as Particle Swarm Optimization (PSO) [3],  Salp Swarm Algorithm 

(SSA) [4], Grasshopper Search Algorithm (GSA) [5], Reptile Search Algorithm (RSA) [6], 

Jaya Algorithm (JA) [7], Whale Optimization Algorithm (WOA) [8], Grey Wolf Optimizer 
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(GWO) [9], and many more, demonstrate that swarm intelligence-based algorithms can handle 

real-world optimization problems. 

 

The revelation of the No Free Lunch (NFL) theorem was one of the more fascinating 

developments in numerical optimization [10]. This theorem states that when the execution time 

of an optimisation (search) method is distributed across the whole set of possible functions, all 

optimisation (search) methods perform similarly. In other words, the mere fact that one 

algorithm can handle a problem successfully does not imply that another algorithm can do it 

just as well. A large number of optimisation techniques, often inspired by nature, are based on 

this theorem [11]. 

The Aquila Optimizer (AO) is based on hunting behaviour of Aquila bird introduced by 

Abualigah et al. [12]. AO algorithm is relatively a new contribution to the family of swarm 

intelligence based metaheuristics which simulates four unique hunting methods of Aquila. The 

AO algorithm is a straightforward population-based algorithm that mimics the social and 

hunting behaviors of aquila birds in order to locate prey. 

 AO has been widely used in many settings due to its strong robustness and worldwide 

exploration capacity. Phase-locked loop, PID coefficients were modified using AO by Guo et 

al. [13] in order to lessen power fluctuations and improve the quality of the grid connection. 

An essential component of the PV inverter is the PLL. Hussan et al. [14] used AO to optimize 

the selective harmonic removal equations for the seven-level H-bridge inverter, reducing the 

total harmonic distortion and a number of components. The optimal minimal entropy 

deconvolution (MED) filter length was determined by Vashishtha et al. [15] using AO to 

increase recognition accuracy for diagnosing bearing problems in Francis turbines. AlRassas 

et al. [16] used AO to identify the optimal network parameters for the adaptive neuro-fuzzy 

inference system (ANFIS) network in order to increase prediction accuracy in the setting of oil 

production time series forecasting.  

A unique Population Segmentation (PS) approach is introduced by the proposed Aquila 

Optimizer (AO) modification. Using PS with the Aquila Optimizer has two main advantages. 

Utilizing data from various solution quality levels, first improves the equilibrium between 

exploration and exploitation, possibly preventing premature convergence and enhancing the 

capacity to escape local optima [17]. Second, combining data from different regions of the 

search space broadens the pool of possible solutions, which is especially useful for complicated 
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or multimodal optimization issues [18]. These enhancements allow the improved AO to 

efficiently converge towards high-quality solutions over a larger variety of problem types, all 

the while maintaining a strong search capacity. Later, IEEE CEC 2019 functions are used to 

test this algorithm's performance. It is then used to tackle engineering design issues, such as 

the design of cantilever beams and pressure vessels. 

In the subsequent sections, we first present a concise introduction to AO and its background in 

Section 2, then describe our enhanced variant, PS-AO, and its developmental basis in Section 

3. Section 4 contains numerical results for the IEEE CEC 2019 benchmark functions. The 

empirical validation of results, contrasting the baseline AO with our proposed version, is 

detailed through statistical examination in Section 5. Results from a few real-world applications 

are shown in Section 6. In section 7, the conclusion and future work are suggested.  

2. Aquila Optimizer (AO) 

The outline of the Aquila Optimizer’s operation, the physical traits of the Aquila bird, its 

inspiration, and the mathematical model are given in this section. 

 

2.1. Inspiration 

In 2021, Abualigah et al. [12] developed the Aquila Optimizer (AO), a revolutionary bionic, 

gradient-free, swarm-based meta-heuristic algorithm. The design of this algorithm is mostly 

inspired by the Aquila, a popular prey bird in the Northern Hemisphere. Aquila catches rabbits, 

marmots, and other ground animals with its razor-sharp talons, powerful feet, and fast reflexes. 

As a result, the AO algorithm's optimization process can be divided into four distinct phases, 

which are as follows in summary.  

 

2.2.  Mathematical Model 

Aquilas are candidate solutions in AO, and the intended prey is identified as the best solution 

at each stage. First, using Eq (1), the starting population of AO is generated randomly in the 

search space of the given issue, just like with the basic framework of other optimization 

paradigms.  

( ) ,   1,2, ,ix rand ub lb lb i N=  − + =  
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where Aquila's position in the population is indicated by 𝑥, a random number within the interval 

0 and 1, Aquila's population size is indicated by 𝑁, and the upper and lower boundaries of the 

search domain are shown by 𝑢𝑏 and l𝑏, respectively. 

In order to facilitate the shift from global exploration to local exploitation, AO sets the 

following conditions for the switch:  

2
 ,     

3

 ,   

Exploration execution if t T

Exploitation execution otherwise






 
 
 




 

Within this bracket, t  represents the ongoing iteration count, while T  denotes the total 

iterations permitted. The algorithm’s mathematical foundation consists of four distinct 

computational phases.  

 

i. Expanded exploration 

Aquila uses this phase to fly high over the ground and thoroughly search the hunting area. 

When it detects prey, it will plunge vertically in the direction of its target. Eq. (1) simulates this 

behavior. 

( ) ( ) ( ) ( )1 1i best m best

t
x t x t x t x t rand

T

 
+ =  − + −  

 
      (1) 

The symbol ( )1ix t +  reflects the thi  aquila’s position changes in the subsequent iteration, with 

bestx  denotes the optimal solution. Additionally, ( )mx t  is the population's average location for 

all Aquilas, and it is determined as follows: 

 

( ) ( )
1

1 N

m ii
x t x t

N =
=  , for all 1,2, ,i D=           (2) 

where N  is the population size and ( )ix t  is the thi  aquila's current position vector. 

ii. Narrowed exploration 
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In the second phase, the Aquila gets ready to land, swoops overhead the target it has located 

from a high altitude and launches an assault. The mathematical expression for this behavior is 

as follows:  

( ) ( ) ( ) ( ) ( )2 1 best rx t x t Levy D x t y x rand+ =  + + −       (3) 

where ( )rx t  represents an Aquila position randomly selected from the current population 𝑁. 

Levy(.) implies the Levy flight function, which is provided as follows. 
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where a  is a constant value equal to 1.5, u and v are random numbers within the interval [0,1], 

and y and x represent the contour spiral shape during the search in Eqs. (4), (5). This contour 

spiral shape can be determined as follows: 

 

1 1

3
cos

2
y r UD D




  
= + − +   

  

            (4) 

1 1

3
sin

2
x r UD D




  
= + − +   

  

             (5) 

During the search iterations, the control parameter fluctuates within the interval [1,20]. Two 

constants   and U ,  are predefined: one at 0.005 and another at 0.00565. 1D Z , ranging 

 1, D . 

 

iii. Expanded Exploitation 

The Aquila bird carefully surveys the prey area during the investigation phase before making 

a low, slow fall attack. Eq. (6) provides a mathematical representation of the method known as 

expanded exploitation, or 3x . 
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( ) ( ) ( )( ) ( )( )3 1 best mx t x t x t rand ub lb rand lb + = −  − + −  +                (6) 

 

where   and   are the exploitation control coefficients set as 0.1. 

iv. Narrowed Exploitation 

The design of the narrowed exploitation technique is based on this hunting strategy. This case's 

mathematical form is provided as follows: 

( ) ( ) ( )( ) ( )4 1 1 2 11 bestx t J x t P rand x t P Levy D rand P+ =  −   −  +        (7) 

( ) ( )
2

2 1

1

rand

T
J t t

 −

−
=                  (8) 

1 2 1P rand=  −
                 (9) 

2 2 1
t

P
T

 
=  − 

 
                           (10) 

where J  is the quality function that balances the search strategy; 1P  is the prey's movement 

parameter, a random number from  1,1− ; and 2P  indicates the flight slope, which decreases 

linearly from 2  to 0 , as the Aquila follows the prey from the first to the last location.  

 

3. Proposed Algorithm 

The population segmentation technique of the Aquila Optimizer (AO) aims to increase the 

variety of solutions and balance between exploration and exploitation. This technique divides 

the population into three groups based on fitness: bestx , mediumx , and worstx . The sizes of these 

segments are 1 , 2 , and 3 , respectively. The algorithm then selects vectors rx , sx , and tx , 

from these segments; for primary computations, rx  is chosen from bestx . The Population 

Segmentation-Aquila Optimizer (PS-AO) is the name of this suggested algorithm. By using 

data from solutions with different quality levels, the enhanced AO may be able to prevent early 

convergence and increase adaptability to a variety of problem types. By dynamically changing 

the segments in each iteration, the approach maintains a consistent balance between using 
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known solutions and exploring new areas of the search space, potentially leading to improved 

performance in a range of optimization scenarios. Fig. 1 shows the flowchart for the suggested 

algorithm PS-AO. 

 

 

 

Fig. 1 The flowchart of the proposed algorithm PS-AO 

 

 

4. Numerical Experiment 

This section examines the performance of AO and the suggested PS-AO using the IEEE CEC 

2019 benchmark functions as a baseline [19]. Ten unconstrained optimization tasks in a range 

of difficulty are included in this benchmark set. These numerical experiments were all carried 

out using MATLAB 2019a. 

4.1. Benchmark Functions and Parameter Setting 

In accordance with the recommendations supplied by IEEE CEC 2019, 51 runs are conducted 

for each benchmark function in order to observe the performance of both methods. For every 
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variable, the search space has a range of  100,100− . Table 1. presents the parameter settings 

of the algorithms

 

Table 1. Algorithms and their parameter settings 

Algorithm Parameters 

PS-AO 𝛼 = 0.1, 𝛽 = 0.1 

AO [12] 𝛼 = 0.1, 𝛽 = 0.1 

MAO [20] 𝛼 = 0.1, 𝛽 = 0.1 

SSA [4] 𝑣 = 0 

WOA [8] 𝑣 = 1 

 4.2 Examination of the Outcomes 

In accordance with IEEE CEC 2019 reporting guidelines, we provide detailed performance 

analyses for the five algorithms—PS-AO, AO, MAO, WOA, and SSA—in Table 1. For every 

test function, the assessment metrics consist of extreme values (Best, Worst), statistical 

measures (Mean, STD), and absolute error numbers. Superior performance measures are 

indicated by bolded entries, and data regularly demonstrates PS-AO's advantages over the 

original AO. Algorithm comparison ratios W/L/T (Win/Loss/Tie) and processing durations are 

shown in the final row, where SSA exhibits the most effective computing performance. 

 

 

Table 2. Statistical performance metrics (Mean, STD, Best, Worst) of AO, PS-AO, and other metaheuristic 

algorithms on IEEE CEC 2019 functions.  

Function PS-AO AO MAO WOA SSA 

F1 Mean 

    STD 

Worst 

Best 

9.90E+01 

0.00E+00 

9.99E+01 

9.89E+01 

9.89E+01 

2.05E+05 

5.72E+04 

3.90E+04 

1.23E+09 

7.35E+08 

1.28E+09 

1.23E+09 

6.78E+06 

7.46E+06 

5.55E+06 

6.25E+06 

7.33E+09 

3.48E+09 

7.77E+09 

7.25E+09 

F2 Mean 

     STD 

Worst 

Best 

1.95E+02 

0.00E+00 

1.99E+02 

1.93E+02 

1.95E+02 

0.00E+00 

1.82E+02 

1.75E+02 

2.82E+04 

7.30E+03 

2.56E+04 

2.95E+04 

7.66E+02 

8.73E+02 

6.99E+02 

7.88E+02 

2.01E+02 

2.08E+-02 

3.11E+02 

2.00E+02 
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F3 Mean 

     STD 

Worst 

Best 

2.94E+02 

1.32E+00 

2.99E+02 

2.85E+02 

2.82E+02 

1.86E+00 

2.88E+02 

2.95E+02 

2.86E+02 

4.42E+-01 

2.95E+02 

2.82E+02 

2.95E+02 

1.92E+00 

3.15E+02 

2.99E+02 

2.97E+02 

1.77E+-15 

3.25E+02 

2.85E+02 

F4 Mean 

     STD 

Worst 

Best 

3.44E+02 

1.37E+01 

3.55E+02 

3.25E+02 

3.68E+02 

9.69E+00 

3.58E+02 

3.25E+02 

2.44E+02 

2.50E+01 

2.58E+02 

2.44E+02 

3.49E+02 

2.49E+01 

4.52E+02 

3.56E+02 

3.43E+01 

1.07E+01 

4.11E+01 

3.25E+01 

F5 Mean 

     STD 

Worst 

Best 

4.93E+02 

4.44E+00 

4.28E+02 

4.21E+02 

4.88E+02 

1.82E-01 

4.99E+02 

4.01E+02 

3.05E+02 

4.89E+01 

3.22E+02 

3.00E+02 

4.97E+02 

4.59E-01 

5.11E+02 

4.99E+02 

5.49E+02 

8.53E+-01 

4.12E+02 

5.22E+02 

F6 Mean 

     STD 

Worst 

Best 

5.92E+02 

1.78E+00 

5.99E+02 

5.12E+02 

5.89E+02 

1.43E+00 

5.99E+02 

5.20E+02 

5.99E+02 

9.22E+-01 

6.12E+02 

5.12E+02 

5.91E+02 

1.75E+00 

6.12E+02 

5.85E+02 

5.98E+02 

8.53E+-01 

6.12E+02 

5.92E+02 

F7 Mean 

     STD 

Worst 

Best 

7.16E+02 

2.56E+02 

8.33E+02 

7.11E+02 

3.10E+02 

2.93E+02 

6.25E+02 

5.36E+02 

2.22E+03 

2.93E+02 

2.69E+03 

2.11E+03 

7.64E+02 

3.00E+02 

6.55E+02 

7.99E+02 

4.73E+02 

9.77E-01 

4.96E+02 

4.25E+02 

F8 Mean 

     STD 

Worst 

Best 

7.96E+02 

1.99E-01 

8.01E+02 

7.55E+02 

8.95E+02 

3.01E-01 

8.99E+02 

8.01E+02 

7.65E+02 

2.39E+-01 

7.25E+02 

7.12E+02 

5.95E+02 

3.21E+-01 

6.22E+02 

5.69E+02 

9.08E+02 

6.13E+-01 

9.55E+02 

9.00E+02 

F9 Mean 

     STD 

Worst 

Best 

8.99E+02 

1.64E+-01 

8.99E+02 

8.58E+02 

9.36E+02 

1.43E-01 

8.58E+02 

9.56E+02 

8.99E+03 

8.68E+-01 

8.56E+03 

7.25E+03 

8.98E+03 

2.01E+-01 

9.11E+03 

8.25E+03 

2.42E+03 

5.96E+-01 

3.11E+03 

2.55E+03 

F10 Mean 

    STD 

Worst 

Best 

9.79E+02 

7.69E+-01 

9.99E+02 

9.65E+02 

9.99E+02 

4.63E+00 

9.99E+02 

9.22E+02 

9.86E+02 

1.35E+-01 

9.25E+02 

8.07E+02 

9.95E+02 

1.33E+-01 

9.99E+02 

8.56E+02 

2.10E+03 

3.56E+01 

3.25E+03 

2.00E+03 

W/L/T 

CPU Runtime 

5/5/2 

3.01E+04 

3/7/2 

3.01E+04 

1/9/0 

2.23E+04 

1/9/0 

5.11E+04 

1/9/0 

4.32E+03 

 

Overall, the PS-AO algorithm performs better than AO in terms of investigating, taking 

advantage of, and escaping the stagnation in local optima.  

4.3.  Analytical statistics  
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This section examines the performance of AO and PS-AO using two distinct statistical 

techniques.  

1. Wilcoxon examination  

2. Friedmann Rank and Bonferroni-Dunn test 

 

1. The Wilcoxon examination  

To assess the statistical validity of the PS-AO results, the non-parametric pairwise  

Wilcoxon test was utilized. The test was run with a significance level of 5% [21]. The 

findings are displayed in Table 5. The following standards were used to draw conclusions 

about the findings.  

 

1. If the p-value is less than 0.01 then the observed difference is highly significant.  

2. If the p-value is less than 0.05, then the observed difference is significant. 

3. If p-value is less than 0.05, both techniques are statistically equivalent. 

Results from Table 3, show that PS-AO is performing better than other algorithms.  

 

 

 

 

Table 3. Wilcoxon rank sum test for the algorithms 

Algorithms ΣR+ ΣR- z-value p-value Sign 

PS-AO vs AO 27 18 0.533 0.594 = 

MAO 37 18 0.969 0.333 = 

WOA 46.50 8.50 1.938 0.050 + 

SSA 37 18 0.969 0.333 = 

2. Friedmann rank test and Bonferroni test 
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The Friedmann rank [22] is evaluated using the mean value from Table 2. From the results, the 

superior performance of PS-AO over AO and other metaheuristic algorithms is evident. The 

last two lines of the Table 4 show the CD value at  0.1 = , and 0.05 =  for Bonferroni Dunn 

CD- bar chart test. From the Fig. 2, it is clear that PS-AO has a lower bar than others. But AO 

is also performing well. 

 

Table 4. Friedmann rank based on the mean value of Table 2 and CD value at the significant levels. 

Algorithm Friedmann Rank 

PS-AO 2.35 

AO 2.55 

MAO 3.40 

WOA 3.33 

SSA 3.50 

CD value at 0.1 =  3.9346 

CD value at 0.05 =  4.1164 

 

 

Fig. 1 Bonferroni Dunn bar chart represents the rank of the correspondence algorithm based on Friedmann 

rank. 

 

5. PS-AO for Engineering Design Problems 
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This section uses the Cantilever Beam (CB) design, and Welded Beam (WB) design problem, 

to verify that PS-AO performs better when applied to real-world challenges [23]. To investigate 

the statistical aspects of the results, thirty separate runs of each problem were conducted.  

5.1.  CB design problem 

The goal of the CB design challenge is to reduce a cantilever beam's weight while accounting 

for the vertical displacement constraint. It is necessary to optimise each of the five side length 

values for the five hollow square blocks. The mathematical model is described in the literature 

[24]. 

The CB design issue results are compared by four distinct MAs, including MAO, AO, SSA, 

and WOA, in Table 5. The outcomes show that, in comparison to other algorithms, the PS-AO, 

is capable of producing better results. For this reason, PS-AO is the best approach to solving 

the CB design issue.  

 

Table 5. CB design results by using PS-AO, and other MAs algorithms. 

Algorithm 
1x  

 

2x  3x  4x  5x  Optimal 

Weight 

PS-AO 6.1221 5.0812 4.9110 3.1223 2.1601 1.3210 

MAO [21] 6.0172 5.3071 4.4912 3.5081 2.1499 1.3999 

AO [10] 5.9134 5.4567 4.4672 3.6012 2.1034 1.3423 

SSA [8] 5.9095 5.5432 4.6014 3.6534 2.4538 1.3568 

WOA [22] 6.1343 5.0651 4.3430 3.8543 2.4073 1.3465 

 

 

5.2.  WB design problem 

The objective of the WB design problem challenge is to lower the cost of producing a welded 

beam. The optimization parameters are clamping bar length (𝐿), height (𝐻), thickness (𝑇𝑇), 

and thickness (𝐵𝐵). An explanation of the mathematical model is provided in the literature 

[25]. 

Table 6 compares the outcomes of the WB design issue by four different MAs: COA, AO, SSA, 

and WOA. The outcomes show that AO shows better results than other MAs. But the second-

best algorithm is PS-AO. So, the PS-AO is capable of producing better results.
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Table 6. WB design results by using PS-AO, and other MAs algorithms. 

Algorithm H  L  
TT  BB  Optimal 

Cost 

PS-AO 0.2217 3.2432 9.0322 0.2122 1.7011 

COA [21] 0.2442 3.1234 9.0344 0.2103 1.7012 

AO [10] 0.1767 3.3563 9.0122 0.2134 1.6555 

SSA [17] 0.2123 3.5211 9.0411 0.2132 1.7344 

WOA [7] 0.2145 3.5461 9.0410 0.2133 1.7345 

6. Conclusion and Future Scope 

With the addition of a population segmentation into AO population, this paper suggests a 

modified form of AO that maximizes the aquila bird's capacity to search for prey. A collection 

of ten standard IEEE CEC 2019 benchmark problems were used to assess the suggested PS-

AO algorithm's robustness. When the suggested algorithm's performance is compared to that 

of other metaheuristic algorithms and basic AO, it becomes clear that PS-AO is quite 

competitive with the other algorithms. Every analysis of the data is conducted using the 

standards established by IEEE CEC 2019. Based on the results of this article's investigation, it 

is suggested that PS-AO performs better than AO in terms of both computational time and error 

value. Additionally, PS-AO performs noticeably better than AO and other cutting-edge 

algorithms for the sample of application issues the study describes.  

PS-AO may also be developed in the future to solve many optimization issues, such as integer 

programming, and constrained optimization problems.  
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